Neutron doses to patients and staff around proton therapy installations

<u>Filip Vanhavere</u>, Olivier Van Hoey, Marijke De Saint-Hubert filip.vanhavere@sckcen.be

Content

- Proton therapy
- Neutron dosimetry
- Patient radiation protection
- Staff radiation protection

Proton therapy

Radiotherapy

- Over 14 million cancer diagnoses per year
- In ¼ of cases radiotherapy is used
- Challenge is maximizing tumour damage, while sparing healthy tissues to minimize secondary cancer risk

Proton therapy

- Localized energy deposition at a tuneable depth
- Beneficial for deep tumours, tumours surrounded by radiosensitive organs and certain tumours in children
- Over 70 active facilities and over 200.000 patients treated

Proton therapy in Belgium

- 1st Belgian proton therapy facility built in Leuven
- First patient end 2019

Neutrons in proton therapy

- Protons interacting with beamline or patient create secondary radiation
- Secondary radiation is dominated by neutrons
 - High-energy neutrons created by intra-nuclear cascades
 - Energy up to maximum proton energy
 - Fast neutrons evaporated by excited nuclei
 - Energy of the order of a few MeV
 - Thermal neutrons by slowing down during collisions
 - Energy around 0.025 eV
- Neutrons are radiation protection issue
 - Out-of-field doses in patients leading to secondary cancer risk
 - Staff exposure

Neutron dosimetry

Neutron interaction with matter

 Photons (gamma rays and x-rays) interact with orbital electrons in the atom.

Neutrons interact with the atom nucleus.

Why is personal neutron dosimetry so difficult?

- Neutrons always together with (mostly strong) gamma fields
- Large energy range: 9 orders of magnitude
 - Thermal 0.025 eV to 100s of MeV
- Need to measure dose equivalent:
 - weighting factor dependent on neutron energy
 - e.g. fast neutron much more harmfull than thermal neutron (per deposited energy)
- Easy detection of thermal neutrons, but
 - Least harmfull
 - Original neutrons are fast

Neutron dose conversion coefficients for Ambient Dose Equivalent, H*(10)

Personal neutron dosimeters

Personal dose depends strongly on neutron energy and angle

Field instrument properties

- Designed to measure ambient dose equivalent.
- Better sensitivity = lower detection levels.
- Better dose equivalent response than personal dosimeters.
- Heavier than personal dosimeters.
- Isotropic response for H*(10).
- Constructed with a central thermal-neutron detector, surrounded by a hydrogenous moderator (CH2) to thermalize the neutrons
- Generally rely on capture reactions: e.g. 10 B(n, α) 7 Li or 3 He(n,p) 3 H

Ambient neutron monitors

- Berthold LB 6411
- ³He proportional counter for detection of thermal neutrons
- Polyethylene moderator to thermalize fast neutrons
- Under-response for high energy neutrons

Ambient neutron monitors

- Thermo Scientific Wendi-2
- ³He proportional counter for detection of thermal neutrons
- Polyethylene moderator to thermalize fast neutrons
- Tungsten shell for detecting high energy neutrons

Ambient neutron monitors

- Ludlum Model 42-41L PRESCILA
- Proton recoil ZnS(Ag) scintillator
- Scintillators for thermal and fast + high energy neutrons

Different types of neutron dosemeters

Active Personal neutron dosimeters

- Thermo Scientific EPD-N2 or DMC GN
- Active electronic dosimeter with 3 Si diodes
 - With hydrogen rich convertor for fast + high energy neutrons
 - With ⁶Li convertor for thermal neutrons
 - Without convertor for photons
- Large over- or underestimations possible for some energies

Similar behaviour Thermo and MGPi detector

Personal neutron dosimeters

- Albedo dosimeter
- Passive dosimeter with 2 pairs of LiF thermoluminescent detectors
 - Combination of ⁶LiF and ⁷LiF to distinguish neutron and photons
 - One pair to measure incoming thermal neutrons
 - One pair to measure backscattered fast + high energy neutrons
- Workplace specific empirical algorithm to combine 4 detectors

Personal neutron dosimeters

- (Landauer) track etch detector
- Passive dosimeter with special polymer (CR-39)
 - Recoil protons create broken polymer chains
 - Tracks can be visualized under microscope by chemical etching
- Relatively good energy response

Scope of IC2017n

Country	Number of participating system per		
	country		
Germany (1), Italy (1)	4		
France, United Kingdom	3		
Austria, Belgium, Czech Republic, Japan,	2		
Switzerland, United States (1)	2		
Brazil, Finland, India, Poland, Romania,	4		
The Netherlands, Turkey	1		

IC2017n Irradiation fields

IC2017n

No.	Radiation quality	H _p (10) (mSv)		
1	Bare ²⁵² Cf source at 0°	0.3	1.5	12
2	Bare 252 Cf & 137 Cs sources at 0° [H_p (10) photons = 1 mSv]		1.5	
3	Bare ²⁵² Cf source at 45°		1.5	
4	D ₂ O-moderated ²⁵² Cf source at 0°		1.2	
5	D ₂ O-moderated ²⁵² Cf source behind shadow block		1.0	
6	Bare ²⁴¹ Am-Be at 0°		1.5	

Categories of Dosemeter

- 33 dosemeter systems from 32 individual monitoring services
 - 18 track systems
 - 7 etched track detectors for fast neutrons with thermal neutron TLD
 - 7 etched track detectors for fast neutrons with thermal neutron converters
 - 3 etched track detectors for fast neutrons without evidence of thermal sensor
 - 1 fission track detector
 - 15 albedo systems
 - 10 TLD with boron-loaded shield
 - 3 TLD with cadmium shield
 - 1 OSLD
 - 1 TLD lacking information on shielding against direct thermal neutrons
 - No electronic dosemeters

Dosemeter Response - summary

Conclusions

- Applying approval criterion and performance limits of ISO 14146:2018
 - 9 (out of 15) albedo passed with not more than two outliers
 - 12 (out of 18) track systems passed with not more than two outliers
- Albedo systems for D₂O-moderated ²⁵²Cf source behind shadow block over-responded due to nearly isotropic distribution and very soft field
- Some albedo systems responded within performance limits because of improved side shielding or correction based on ratio of readings behind front and albedo window
- Track detectors tend to underestimate low-energy neutrons at high angles of incidence

Personal neutron dosimeters

- Workplace specific correction factor by field characterization
 - Assessment of neutron energy spectrum with Bonner spheres

 Assessment of neutron directional distribution with personal dosimeters on different sides of a slab phantom

 Calculation of reference Hp(10) value and comparison with personal dosimeter measurement to determine appropriate correction factor

Patient radiation protection

Organ dose assessment

Physical anthropomorphic phantoms of different sex and age

Compact passive detectors for in-phantom measurements

Bubble detectors

Track etch detectors

Thermoluminescent detectors

Brain irradiation measurements

Brain irradiation

- Spherical tumor
 - r=3 cm
 - Dose per fraction to the tumor 2 Gy
- Out-of-field organ doses
- 5 year and 10 year old phantoms

- Varian Clinac 2300, Centre of Oncology Krakow
- 3 non-coplanar beams (6MV) 336MU
- Dynamic and mechanical wedge
- IMRT (Krakow 2013)
 - Varian Clinac 2300, Centre of Oncology Krakow
 - 9 coplanar beams (6MV) 443MU
- GammaKnife (Zagreb 2014)
 - Leksell GK, University Hospital Zagreb
 - Co-60 sources
 - Usually small tumours
- Proton therapy (Krakow 2014)
 - Proteus 235 (IBA), Cyclotron Centre Bronowice in Krakow
 - Spot scanning (70-140 MeV)

Leksell Gamma Knife

Proton therapy (IBA, Proteus C-235)

30

Brain irradiation measurements in proton therapy

- Neutron doses are lower than non-neutron doses close to the target, while the neutron dose becomes larger than non-neutron dose further away from the target
- In proton therapy the out-of-field doses range from 0.6 mSv/Gy in thyroid to <0.01 mSv/Gy in intestines, ovaries, bladder and testes

31 © SCK•CEN, 2018

Brain irradiation measurements: Protons vs photons

→ Protons result in lower out of field doses than photons

- One order of magnitude close to the brain
- More than two order of magnitude further away from the brain
- Measurements during craniospinal irradiations show even two to three orders of magnitude lower out-of-field doses for protons in comparison with photons

Patient radiation protection in proton therapy

- Out-of-field doses are 1-3 orders of magnitude lower than in photon therapy
- Further away from the target, neutron doses are dominant for the out-of-field doses
- Further research required to limit neutron doses and thus secondary cancer risk even more

Staff radiation protection

 Neutron field characterization at different locations inside treatment room and adjacent technical rooms

 Thermal, fast and high energy neutrons with different contributions depending on the location

- Correction factors for electronic dosimeters up to a factor 16
- Smaller corrections for track etch and especially bubble detectors

$\frac{H_p(10)_{meas}}{H_p(10)_{ref}}$	1a	1b	2a	2c
EPD-N2	3.2	16	8.0	-
DMC 2000 GN	3.2	11	7.2	-
Bubble	1.2	-	-	1.1
Landauer CR39	0.5	0.6	-	-

Proton therapy facility UZ Leuven

Proton therapy treatment room

Proton therapy research beamline

Staff radiation protection in proton therapy

- Sufficient neutron shielding is required for cyclotron bunker and treatment room to limit staff doses
- Shielding design should be based on Monte Carlo radiation transport simulations
- Validation of shielding and estimation of staff doses by measurements with portable neutron and gamma monitors
- Fixed ambient neutron and gamma monitors can be installed for monitoring dose rates at critical locations, also important for gamma radiation due to activation
- If staff can receive significant neutrons doses, personal neutron dosimeters should be used
- Ambient neutron monitors and personal neutron dosimeters should be able to measure high energy neutrons, preferably a field specific correction factor should be applied