



# Information and radiation protection for all healthcare practitioners, to some extent involved in the care for nuclear medicine patients - Superior Health Council, publication 8277

François Jamar, Université Catholique de Louvain and SHC

Continuing education, FANC, Nov 10, 2017

https://www.health.belgium.be/fr/conseil-superieur-de-la-sante?keyword=8277 https://www.health.belgium.be/nl/hoge-gezondheidsraad?keyword=8277



#### Acknowledgements

| BACHER Klaus    | Radiophysicien agréé              | UZ Gent |
|-----------------|-----------------------------------|---------|
| CAUSSIN Jacques | Expert agréé en contrôle physique | UCL     |
| COVENS Peter*   | Expert agréé en contrôle physique | VUB     |

DE GEEST Ellen Expert agréé en contrôle physique, Controlatom

Radiophysicien agréé

DE SPIEGELEER Michel Expert agréé en contrôle physique UCL JAMAR François\* Médecine Nucléaire UCL

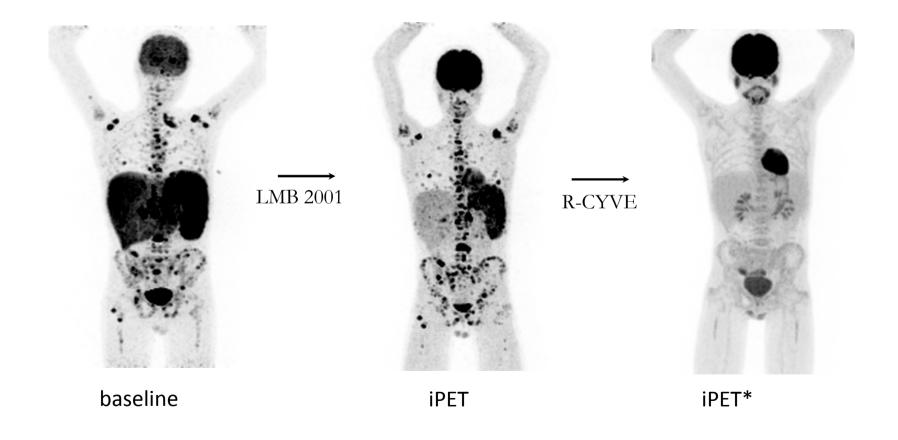
MATHIEU Isabelle Médecine Nucléaire Clin. St-Elisabeth Namur

MERLO Pierre Radiophysicien agréé Hôpital de Jolimont

MONSIEURS Myriam Expert agréé en contrôle physique RU Gent MORTIER Rudi Médecine du travail, Directeur médical IDEWE

PAULUS Patrick\* Médecine Nucléaire CHR Citadelle, Liège

VANDECAPELLE Marleen Expert, Applications médicales AFCN WAMBERSIE André Radioprotection, Radiobiologie UCL




#### Objectives of the report

- To provide comprehensive and simple guidance to all health care practitioners involved to some extent with the care of Nuclear Medicine patients
- To propose scientific background for reasonable behaviours with those patients
- To stimulate the use of standardized approaches through work packages dedicated to every interest group (fiches)











- RD 2001
  - Art. 53.2: aims at protection of the patient
  - Art. 25: more important here, aims at the protection of the worker
    - Protection at work
    - Protection of pregnant staff (declaration)
    - Yearly training and education
    - However, remains vague as to what has to be implemented and by whom: EXPLOITANT
    - The role of the occupational physician is essential, in cooperation with local responsible(s) and physical control



#### Concerned groups

- Staff in Nuclear Medicine
  - Physician
  - Nurses and technologists
  - Other staff (administration, front office, physicists, radiopharmacists...)
- Staff on wards
- Staff in other medico-technical departments (eg. radiology, cardiology, endoscopy, laboratory,...)
- Patient transport (carts or volunteers)
- Cleaning services
- External workers: electricians, plumbers, maintenance technicians, controllers....



#### Definition and nature of the risk(s)

- External exposure
  - Contact with unsealed sources for preparation of radiopharmaceuticals
  - Contact with unsealed sources for administration to patients (mainly iv.)
  - Contact with injected patients for performing imaging
  - Contact with wastes and patients' excreta
  - All other contacts with patients
- Internal exposure (contamination)
  - Internal contamination
  - External contamination (radiopharmacy, patient handling, excreta,...)

New exposures: CT-scan with hybrid imaging, therapy with high  $\beta$ - activities or alphas



## Definition and nature of the risk(s)

























#### Risk probability

- Within NM Depts, risks remain very low, ie.
  - Minor skin contaminations (gloves!)
  - Unexpected prolonged contact with therapy patient (accident, ressuscitation,...)
  - Room contamination and closure/exclusion....
- Incidents/accidents may occur but are very rare eg.
  - Major external contamination (skin, eyes, ...)
  - Inhalation of <sup>125</sup>I (only in research laboratories nowadays)
  - Exception for cyclotrons and reactors workers (out of the scope)



## Pillars of radiation protection for HCP/patients

- Justification
  - What has not to be done should not be done
- Optimization (ALARA)
  - What has to be done should be done properly and with the lowest radiation dose to all involved
- Dose limits
  - Must be respected (staff vs public; no limits for patients)



#### Practicals of radiation protection for HCP

- Time
- Distance
- Shielding
- Common to all procedures, shielding vs patients unrealistic

- Contamination: specific to unsealed sources
  - Handling of sources
  - Handling of injectables
  - Handling of wastes





- Education about radiation for the patient (art. 53.2)
  - Pertains to general education of physicians, nurses and technologists accreditation required (visa + validation of curriculum)
- Education about self-protection (art. 25)
  - Responsibility of the 'exploitant', usually covered by
    - Internal RP Dept (Physical Control)
    - External providers
    - Departments self
    - Usually well understood but no actual control of what is provided



#### Training in radioprotection for staff

- How to protect oneself?
  - Keep in mind distance/time, with highly radioactive patients (therapy)
  - Keep in mind the caring role for the low radioactive patient
  - Avoid any risk of external or internal contamination (gloves for single-use, protective clothes if needed, overshoes, 'do not eat, drink, smoke, make-up' while taking care of patients)
  - Use protective measures such as syringe shielding, lead appron (?), appropriate use of waste sorting, in selected cases, instant-reading dosimeter





- Referring physician
  - Justification and shared responsibility
- Helper
  - Knowingly and willingly and beyond a professional relationship
- Patient
  - Cost/benefit analysis

Not the responsibility of the occupational physician Although in multidisciplinary contacts, her/his advice might be useful



#### Practical information – external exposure

- Gamma rays: continuous exposure
  - From gamma emitters,  $\beta^+$  (annihilation) and  $\beta^-$  emitters (bremsstrahlung)
  - Main sources of whole-body exposure

Time and distance

•  $\beta^+$  and  $\beta^-$  emitters: main sources of extremity (+eye of lens?) exposure: intermittent exposure

Time and shielding

- X-rays: intermittent exposure
  - New source of exposure due to hybrid imaging (PET-CT and SPECT-CT)

**Distance and shielding** 



#### Practical information – external exposure

Dose rate in NM (from patients and sources)

| Examen<br>(immédiatement après<br>l'injection) | Activité injectée<br>(MBq) | Débit de dose à 1m<br>au moment de quitter<br>le service (µSv/h) |
|------------------------------------------------|----------------------------|------------------------------------------------------------------|
| Scintigraphie osseuse                          | 740                        | 7.5                                                              |
| Examen thyroïdien (Tc-99m)                     | 110                        | 2                                                                |
| Examen rénal (dynamique)                       | 150-185.                   | 4                                                                |
| PET (F-18)                                     | 260                        | 21                                                               |



#### Practical information – external exposure

Dose rate in NM (from patients and sources)

|                                                        | Débit de dose |
|--------------------------------------------------------|---------------|
|                                                        | (mSv/h)       |
| En contact direct avec une seringue contenant 740      | 260           |
| MBq (20mCi)                                            |               |
| En contact direct avec une seringue contenant          | 2.6           |
| 740MBq (20mCi avec blindage de 2 mm                    |               |
| En contact direct avec une fiole contenant un éluat de | 2300          |
| 30GBq (810mCi)                                         |               |
| A 30cm d'une fiole contenant un éluat de 30GBq (810    | 7.5           |
| mCi)                                                   |               |
|                                                        |               |

(calculé grâce au manuel Delacroix, 2002 [11])



#### Practical information – internal exposure

- Remains exceptional but potentially dangerous
  - Contamination with <sup>99m</sup>Tc or <sup>18</sup>F is most probably without consequences
  - Contamination with <sup>125</sup>I and <sup>131</sup>I may lead to significant absorbed doses (up to Grays in the thyroid gland)
  - Minute contamination with <sup>223</sup>Ra can lead to high absorbed doses (L20 200 kBq/ingestion) ie. 2.000 times more than <sup>99m</sup>Tc

Respect rules: use gloves and change them, no food or drinks, no smoking, no make up



## Practical information – protection measures









## Practical information – protection measures











- Inconsistancy of the Belgian legislation
  - RD 20/07/2001 may tolerate 1 mSv/yr including pregnancy to the mother and by extension to the fetus
  - RD of 02/05/1995 does not allow a pregnant women to be exposed to chemical, biological and physical risks
  - In NM, the whole-body dose may be unrelevant as contamination may occur!
  - Therefore prophylactic protection from work is compulsory for pregnant women
  - Max 5-mo breastfeeding period is foreseen (exception for multiple births)



## Practical information – orderly (brancardiers)

- External exposure: ~0 (reduce length of transport path)
- Contamination: minimal risk with urine, wounds, vomitting patient preparation by nursing staff is essential
- Dosimeter: optional
- If anticipated risk: gloves
- If incident: call/ask Nuc med Department



#### Practical information —technical services

- External exposure: limited except for US (should ideally be performed before, ALARA!)
- Contamination: minimal risk with urine, wounds, vomitting patient preparation by nursing staff is essential
- Always wear work clothes
- Gloves fo invasive techniques (endoscopy, biopsy, cathetherism)
- Collect wastes if appropriate (call NM)
- NM should warn (if possible) the staff for patients with higher risk (131, 223Ra)



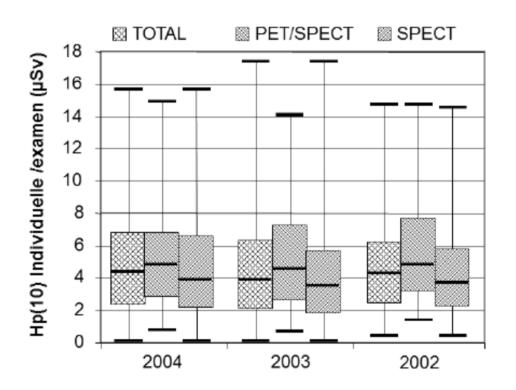
#### Practical information – staff on wards

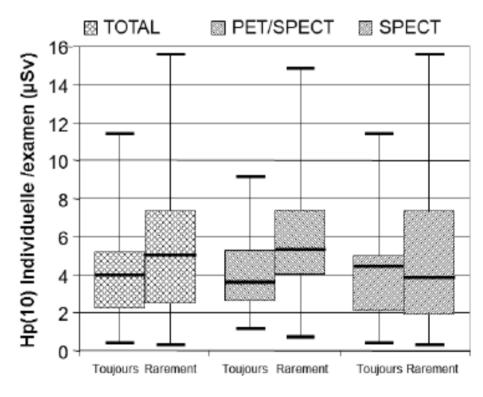
- Specific instructions for shielded rooms
- Usually staff on wards is not considered professionally exposed
- External exposure: negligible
- Contamination: may be more frequent by direct contact with patient's biological secretions (blood, urine, wounds, burns, vomit,...)
- Usually biological protection is sufficient
- Collect wastes: avoid large volumes of contaminated wastes!





- Technicians for specific maintenance are usually well trained
- Others (electricians, painters, plumbers,...) are not aware:
  - Supervision by local staff, preparation of tasks
  - Dosimeter if controlled zone
  - CAVE: lavatories, waste zone
  - Never operate X-ray equipment without supervision

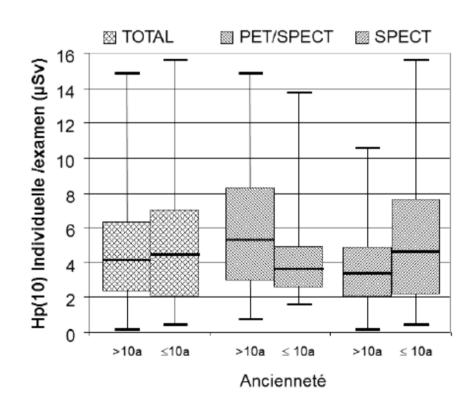

#### Practical information – cleaning staff


UCL Université catholique de Louvain

- The major issue is the training because of:
  - Low level of education
  - Language issues
  - Frequent rotation (internal/external companies)
- Dosimeter is compulsory
- Instruct well about sorting wastes!!!



#### Doses to staff – a Belgian exploratory survey



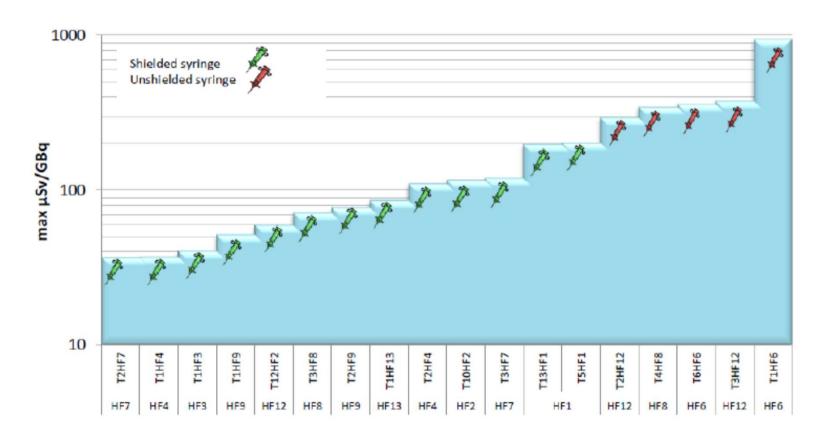



Use of syringe shielding



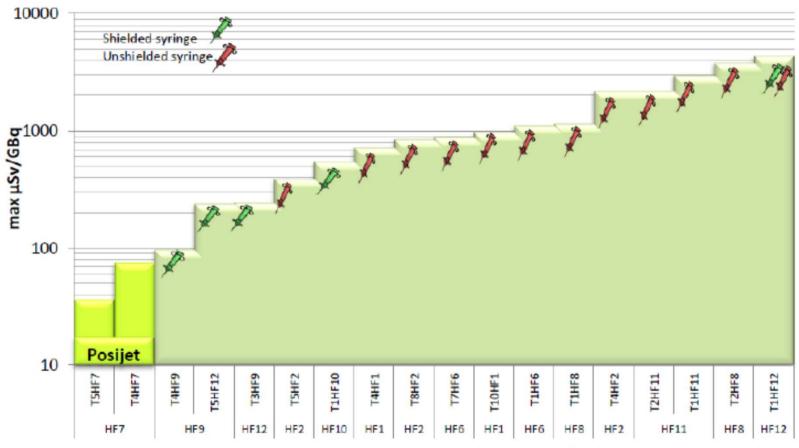
## Doses to staff – a Belgian exploratory survey






#### Doses to staff – a Belgian exploratory survey

- Introduction of PET has not lead to an increase in yearly individual or collective doses (corrected for volumes and staff)
- Use of protection measures (lead shielding, lead appron) is useful
- Experience is not a guarantee for reducing doses, nor was, at that time, training
- A repeat study is mandatory to look at >ten years of experience




#### Doses to staff – EXDOS



www.oramed-fp7.eu

#### Doses to staff – EXDOS



Maximum normalized doses per worker for preparation of F18



## Practical approach: dedicated fiches



#### ANNEXE 4: FICHE D'INFORMATION POUR LE PERSONEL CHARGE DU TRANSPORT DES PATIENTS EN MEDECINE NUCLEAIRE

| Groupe cible                       | Toute personne chargée du transport de patients du service de médecine nucléaire vers d'autres services. |
|------------------------------------|----------------------------------------------------------------------------------------------------------|
| Objet                              | Résumé d'informations concernant la protection et les risques éventuels à proximité d'un patient porteur |
|                                    | de substances radioactives.                                                                              |
| Fréquence et durée de l'exposition | Occasionnelle                                                                                            |
| Voies d'exposition                 | Exposition externe: A proximité des patients ayant reçu une injection et des déchets éventuels.          |
|                                    | Contamination: lors d'un incident, par contact avec les liquides biologiques de patients ayant reçu une  |
|                                    | injection (sang, urine, vomissures).                                                                     |
| Mesures de protection              | Limiter le temps auprès de patients ayant reçu une injection, garder les distances (>1m) par rapport au  |
|                                    | patient si possible et prendre des mesures d'hygiène en cas d'incident (perte d'urine, vomissures). Dans |
|                                    | ce cas, toujours prendre contact avec le service de médecine nucléaire.                                  |
| Moyens de protection               | Vêtements de travail distincts et en cas d'incident : gants.                                             |
| Déchets                            | Maintenir les déchets découlant d'un incident éventuel (perte d'urine, vomissures,) dans un sac à        |
|                                    | déchets séparé et prendre contact avec un responsable du service de médecine nucléaire.                  |
| Grossesse et allaitement           | Eviter tout contact prolongé avec le patient à courte distance.                                          |
| Port d'un dosimètre                | En fonction de la charge de travail                                                                      |
| Contrôle médical                   | examen médical ciblé (rayonnement ionisant) uniquement si considéré comme nécessaire par le médecin      |
|                                    | du travail.                                                                                              |
| Contact (Médecine nucléaire)       | Dr X tél :                                                                                               |
| Contact (hors médecine nucléaire ) | Dr Y, médecin du travail, tél                                                                            |
|                                    | CPPT: M./Mme, tél:                                                                                       |
| En cas d'urgence radiologique      | Service de Contrôle physique interne, externe, tél                                                       |
|                                    | Service de prévention, tél                                                                               |
|                                    | Service de garde, tél                                                                                    |
| Référence interne                  | SOP xyz Validation Approbation                                                                           |
| Référence externe                  | CSS                                                                                                      |



## Conclusions for the occupational physician

- Nuclear Medicine is rapidly evolving
  - PET and high energy annihilation photons
  - Introduction of hybrid imaging with X-rays from which doses to staff can remain almost 0
  - Therapy with beta (90Y) and high finger doses
  - Therapy with alpha (223Ra) with high radiotoxicity and risk of internal contamination
- Staff surveillance is needed as well as training and continuous education
- The probability of risk is very low, but risks may be substantial
- A workplace visit is desirable especially in small departments